[bookmark: _GoBack]{MAT 335} AP Computer Science
	Date
	hours
	Units
	Vocabulary
	 Standards Resources
	
	
	

	September

September
	

Lab 1: Click Alonzo Game
 (40–80 minutes) for required pages

Lab 2: Gossip
 (90–180 minutes)

Lab 3: Modern Art with Polygons
(120–240 minutes)

Lab 4: Protecting Your Privacy
 (120–240 minutes)

Lab 5: Follow the Leader
(35–70 minutes)
Optional Projects
	Unit 1: Introduction to Programming
Lab 1: Click Alonzo Game
Getting Started with Snap!

Programming a Game

Sharing Your Game

Giving the Player Feedback

Improving Your Game
Lab 2: Gossip
Pair Programming
Making Programs Talk

Customizing and Debugging

Making Your Own Block

Adding Variety to Gossip
Lab 3: Modern Art with Polygons
Exploring Motion

Angles and Turning

Blocks with Inputs

Modify Your Pinwheel

Using Pinwheel to Make Polygon

Looping with a Counter
Keeping a Programming Journal
Lab 4: Protecting Your Privacy
Your Image in the Cloud

Examining Privacy

Tanya Rider's Story

Innovations and Privacy
Lab 5: Follow the Leader
Sprite Following the Mouse

Sprite Following a Sprite
*if time there are optional projects to be completed
	

Sprites – costumes – transparency

Lists – strings – concatenation- substring – debugging – procedures – reporters – commands – expressions - values

Algorithm – pseudocode – parameter – argument – iteration

Personal Identifiable Information (PII)

Infinite loop – code segment
	CRD-2.B.1: A program is a collection of program statements that performs a specific task when run by a computer. A program is often referred to as software.

CRD-2.C.2: An event is associated with an action and supplies input data to a program.

CRD-2.C.3: Events can be generated when a key is pressed, a mouse is clicked, a program is started, or by any other defined action that affects the flow of execution.

CRD-2.C.5: In event-driven programming, program statements are executed when triggered rather than through the sequential flow of control.

	Introduction to Teacher Guide (edc.org)

Teaching Guide for Unit 1: Introduction to Programming (edc.org)

	
	

	
	Lab 1: Games
 (75–150 minutes)

Lab 2: Making Lists
 (75–150 minutes)

Lab 3: Making Decisions
 (140–280 minutes)

Lab 4: Making Computers Do Math
 (60–120 minutes)

Lab 5: Copyright
 (50–100 minutes)
Optional Projects
	Unit 2: Abstraction (edc.org)

Lab 1: Games
Starting a Number Guessing Game

Checking the Player's Guess

Debugging and Extending Your Number Guessing Game

Keeping Score with Global Variables

Choosing a Costume

Lab 2: Making Lists
Shopping List App

Planning a Quiz App

Checking Each Quiz Answer
Lab 3: Making Decisions
What's a Predicate?

Combining Predicates

Combining Conditionals

Boolean Expression Experiments

Keeping Items from a List

Solving a Word Puzzle
Lab 4: Making Computers Do Math
The Mod Operator

Making a Mathematical Library

More Mathematical Reporters
Lab 5: Copyrights
Copyright

Fair Use

The Social Bargain

Copyrights and Computers

Software as Copyright Enforcement

	

	Variable – local variable – predicate – Boolean – conditional – global variable – initialize – list- index

Element – sublist – data type – primitive data type – constructor – selector – data abstracting – composition of functions – traversing – abstract data type

	
	

	Domain – range – input – output – sequencing – selection – iteration – string- index – nestled conditional statement

Software library – application program interface (API)

Creative commons – free software – open source – open access

	
	

	
	
	

	AAP-2.C: Evaluate expressions that use arithmetic operators.

AAP-2.E: For relationships between two variables, expressions, or values:
Write expressions using relational operators.
Evaluate expressions that use relational operators.

AAP-2.F: For relationships between Boolean values:
Write expressions using logical operators.
Evaluate expressions that use logic operators.

AAP-2.H: For selection:
Write conditional statements.
Determine the result of conditional statements.
AAP-2.I: For nested selection:
Write nested conditional statements.
Determine the result of nested conditional statements.
AAP-2.L: Compare multiple algorithms to determine if they yield the same side effect or result.
AAP-1.C.3: An index is a common method for referencing the elements in a list or string using natural numbers.
AAP-1.C.4: A string is an ordered sequence of characters.

AAP-2.A.4: Every algorithm can be constructed using combinations of sequencing, selection, and iteration.

AAP-2.B.1: Sequencing is the application of each step of an algorithm in the order in which the code statements are given.

AAP-2.G.1: Selection determines which parts of an algorithm are executed based on a condition being true or false

AAP-2.H.1: Conditional statements or “if-statements” affect the sequential flow of control by executing different statements based on the value of a Boolean expression.

AAP-2.I.1: Nested conditional statements consist of conditional statements within conditional statements.

AAP-2.L.1: Algorithms can be written in different ways and still accomplish the same tasks.

AAP-2.L.3: Some conditional statements can be written as equivalent Boolean expressions.

AAP-2.L.4: Some Boolean expressions can be written as equivalent conditional statements.

AAP-2.L.5: Different algorithms can be developed or used to solve the same problem.

	Teaching Guide for Unit 2: Abstraction (edc.org)

	
	

	

October

October/ November
	

Lab 1: Dealing with Complexity
 (110–220 minutes)

Lab 2: Contact List
 (85–170 minutes) for required pages

	Unit 3: Data Structures (edc.org)

Lab 1: Dealing with Complexity
Robot in a Maze
Fractal Art

Using Abstraction to Nest Triangles

Brick Wall

Building a Tic-Tac-Toe Board

Debugging Recap

Lab 2: Contact List
Creating the Contact ADT
Adding Contact Data

Adding Birthdays

Selecting Specific Data

Transforming Every List Item

	

Recursion – abstraction – procedural abstraction – draw brick – modularity – clone – debugging

Input – output – modularity – high order function
	AAP-2.A: Express an algorithm that uses sequencing without using a programming language.
AAP-2.G: Express an algorithm that uses selection without using a programming language.
AAP-2.J: Express an algorithm that uses iteration without using a programming language.
AAP-3.B: Explain how the use of procedural abstraction manages complexity in a program.
AAP-3.C: Develop procedural abstractions to manage complexity in a program by writing procedures.
AAP-1.A.2: Using meaningful variable names helps with the readability of program code and understanding of what values are represented by the variables.
AAP-2.B.7: Clarity and readability are important considerations when expressing an algorithm in a programming language.
AAP-2.M.2: Knowledge of existing algorithms can help in constructing new ones. Some existing algorithms include: determining a robot's path through a maze
AAP-3.B.1: One common type of abstraction is procedural abstraction, which provides a name for a process and allows a procedure to be used only knowing what it does, not how it does it.

AAP-3.B.5: Using parameters allows procedures to be generalized, enabling the procedures to be reused with a range of input values or arguments.

CRD-2.C: Identify input(s) to a program.
CRD-2.D: Identify output(s) produced by a program.
AAP-1.D: For data abstraction:
Explain how the use of data abstraction manages complexity in program code.

CRD-2.C.1: Program input is data sent to a computer for processing by a program. Input can come in a variety of forms, such as tactile, audio, visual, or text.
CRD-2.C.4: Inputs usually affect the output produced by a program.
CRD-2.C.6: Input can come from a user or other programs.
CRD-2.D.1: Program output is any data sent from a program to a device. Program output can come in a variety of forms, such as tactile, audio, visual, or text.
CRD-2.D.2: Program output is usually based on a program’s input or prior state (e.g., internal values).
DAT-2.D.3: Search tools are useful for efficiently finding information.
AAP-1.D.5: Data abstractions often contain different types of elements.
AAP-3.B.2: Procedural abstraction allows a solution to a large problem to be based on the solution of smaller subproblems. This is accomplished by creating procedures to solve each of the subproblems.
AAP-3.B.3: The subdivision of a computer program into separate subprograms is called modularity.
	
Teaching Guide for Unit 3: Data Structures (edc.org)

	
	

	November
	Lab 3: Tic-Tac-Toe
no required pages

Lab 4: Robots and Artificial Intelligence
 (85–170 minutes) for required pages

Lab 5: Computers and Work
 (70–140 minutes)
Optional Projects
	Lab 3: Tic-Tac-Toe
Remembering the Moves and Possible Wins
Detecting A Win
Checking for Ties

Lab 4: Robots and Artificial Intelligence
What is AI?
Robots and Humans
Implications of AI
Recent Breakthroughs

Lab 5: Computers and Work
Past and Future
Working Conditions
Working Remotely

	

Sprite variable

Artificial intelligence (AI)

	IOC-1.A: Explain how an effect of a computing innovation can be both beneficial and harmful.
IOC-1.D: Explain how bias exists in computing innovations.

IOC-1.B.1: Computing innovations can be used in ways that their creators had not originally intended: Machine learning and data mining have enabled innovation in medicine, business, and science, but information discovered in this way has also been used to discriminate against groups of individuals.
IOC-1.D.1: Computing innovations can reflect existing human biases because of biases written into the algorithms or biases in the data used by the innovation.
IOC-1.D.2: Programmers should take action to reduce bias in algorithms used for computing innovations as a way of combating existing human biases.
IOC-1.D.3: Biases can be embedded at all levels of software development.
IOC-1.F.11: Computing innovations can raise legal and ethical concerns. Some examples of these include:
the development of algorithms that include bias

IOC-1.A: Explain how an effect of a computing innovation can be both beneficial and harmful.

IOC-1.A.2: The way people complete tasks often changes to incorporate new computing innovations.

	Teaching Guide for Unit 3: Data Structures (edc.org)

	
	

	November 11th
	
	10 WEEK MARKING PERIOD CLOSES
	10 WEEK MARKING PERIOD CLOSES
	10 WEEK MARKING PERIOD CLOSES
	10 WEEK MARKING PERIOD CLOSES

	
	

	November
 20 week making period
	AP CSP Create Task
(at least 12 hours required)

	AP CSP Create Task
Using a Development Process to Organize Your Coding
Choosing Your Project
Implementing Your Development Process
Testing Your Project
Communicating About Your Project
Evaluating Your Work

	

ALL PREVIOUS VOCABULAY
	CRD-2.E: Develop a program using a development process.
CRD-2.F: Design a program and its user interface.
CRD-2.H: Acknowledge code segments used from other sources.
CRD-2.I: For errors in an algorithm or program:
Identify the error.
Correct the error.
CRD-2.J: Identify inputs and corresponding expected outputs or behaviors that can be used to check the correctness of an algorithm or program.
CRD-2.B.4: The behavior of a program is how a program functions during execution and is often described by how a user interacts with it.
CRD-2.B.5: A program can be described broadly by what it does, or in more detail by both what the program does and how the program statements accomplish this function.
CRD-2.E.1: A development process can be ordered and intentional, or exploratory in nature.
CRD-2.E.2: There are multiple development processes. The following phases are commonly used when developing a program: investigating and reflecting, designing, prototyping, testing
CRD-2.E.3: A development process that is iterative requires refinement and revision based on feedback, testing, or reflection throughout the process. This may require revisiting earlier phases of the process.
	AP Performance Tasks Teacher Guide (edc.org)
	
	

	Nov. 23-27
	Thanksgiving Break

	
	
	

	December
	Lab 1: Computer Networks
 (80–160 minutes)

Lab 2: Cybersecurity
 (145–290 minutes)

Lab 3: Community and Online Interactions
 (185–370 minutes)

Lab 4: Data Representation and Compression
 (150–300 minutes)

	Unit 4: How the Internet Works (edc.org)
Lab 1: Computer Networks
What Is the Internet?
Network Redundancy
Internet Abstractions and Open Protocols
Who's In Charge of the Internet?

Lab 2: Cybersecurity
Cryptography
Caesar Cipher Project
Public Key Encryption
Who Cares About Encryption?
Security Risks
What Can You Do?

Lab 3: Community and Online Interactions
Communication and Community
Cyberbullying
CensorshipSearch Engines
Computing Around the World
Benefits of Computing
Digital Collaboration
Binary Representation
Data Compression

Lab 4: Data Representation and Compression
Bits
Binary Sequences
Representing Whole Numbers
Floating Point

	

Computer network – computing system – computing device – world wide web – router – internet service providers (ISP’s) – bandwidth – the cloud – path – routing – scalability – redundancy – fault tolerance – protocol – IP address – packet – packet switching – internet protocol (IP) – transmission control protocol (TCP)

Encryption – decryption- symmetric encryption – public key encryption – secure sockets layer/transport layer security (SSL/TLS) – certificate authorities – malware – keylogging software – computer virus – antivirus/anti-malware software – firewall – phishing – DDoS (Disturbed Denial of Service) attack – rogue access point

Digital divide – citizen science – crowdsourcing – computing innovation

Bit – byte – word – binary sequence – analog – sampling- sampling rate – width – floating point – lossless compression – lossy data compression

	
CSN-1.A.1: A computing device is a physical artifact that can run a program. Some examples include computers, tablets, servers, routers, and smart sensors.
CSN-1.A.2: A computing system is a group of computing devices and programs working together for a common purpose.
CSN-1.A.3: A computer network is a group of interconnected computing devices capable of sending or receiving data.
CSN-1.A.4: A computer network is a type of a computing system.
CSN-1.A.5: A path between two computing devices on a computer network (a sender and a receiver) is a sequence of directly connected computing devices that begins at the sender and ends at the receiver.
CSN-1.A.6: Routing is the process of finding a path from sender to receiver.
CSN-1.A.7: The bandwidth of a computer network is the maximum amount of data that can be sent in a fixed amount of time.
CSN-1.A.8: Bandwidth is usually measured in bits per second.
CSN-1.B.1: The Internet is a computer network consisting of interconnected networks that use standardized, open (nonproprietary) communication protocols.
CSN-1.B.2: Access to the Internet depends on the ability to connect a computing device to an Internet-connected device.
CSN-1.B.3: A protocol is an agreed-upon set of rules that specify the behavior of a system.
CSN-1.B.4: The protocols used in the Internet are open, which allows users to easily connect additional computing devices to the Internet.
CSN-1.B.5: Routing on the Internet is usually dynamic; it is not specified in advance.
CSN-1.B.6: The scalability of a system is the capacity for the system to change in size and scale to meet new demands.
CSN-1.B.7: The Internet was designed to be scalable.
CSN-1.C.1: Information is passed through the Internet as a data stream. Data streams contain chunks of data, which are encapsulated in packets.
CSN-1.C.2: Packets contain a chunk of data and metadata used for routing the packet between the origin and the destination on the Internet, as well as for data reassembly.

Fee

	
Teaching Guide for Unit 4: How the Internet Works (edc.org)

	
	

	Dec. 21-Jan 1
	Christmas Break

	
	
	

	January 2-27
	Lab 1: Search Algorithms and Efficiency
 (150–300 minutes) for required pages

Lab 2: Simulations
 (40–80 minutes)

Lab 3: Turning Data into Information
 (125–250 minutes)

Lab 4: Unsolvable and Undecidable Problems
no required pages

Lab 5: Computing in War
 (120–240 minutes)

Lab 6:
 Tic-Tac-Toe with a Computer Player
	Unit 5: Algorithms and Simulations (edc.org)
Lab 1: Search Algorithms and Efficiency

Guess My Number
How Many Five-Letter Words Are There?
Is "Seperate" Spelled Correctly?
Exactly How Much Faster Is Binary Search?
Categorizing Algorithms
Heuristic Solutions
Removing Duplicates
Parallelism
Lab 2: Simulations

Why Use Simulations?
Disease Spread Project
Lab 3: Turning Data into Information
Analyzing Global Health Data
Self-Check: Big Data
Importing and Accessing Data
Analyzing Data
Visualizing Data
Metadata
Lab 4: Unsolvable and Undecidable Problems
Proof by Contradiction
An Undecidable Problem
Lab 5: Computing in War
War and Technology
Computers and War
Military Technology in Everyday Life
Lab 6: Tic-Tac-Toe with a Computer Player
Review Your Tic-Tac-Toe Project
Creating a Computer Player
Developing a Gameplay Strategy
Making the Computer Play Strategically

	

Problem – instance of a problem – linear search – sequential search – linear time – binary search – efficiency – linear time – sublinear time – constant time – quadratic time – polynomial time – exponential time – decision problem – optimization problem – decidable – undecidable – sequential computing – parallel computing – distributed computing – processor – speedup -

Simulations -

Data – information – correlation – insight – record – field – column – cleaning data – classifying data – mode – metadata -

Proof by contradiction – undecidable – self-contradictory – infinite loop – unsolvable problem – undecidable problem -

	AAP-2.O.1: Traversing a list can be a complete traversal, where all elements in the list are accessed, or a partial traversal, where only a portion of elements are accessed.
AAP-2.O.5: Linear search or sequential search algorithms check each element of a list, in order, until the desired value is found or all elements in the list have been checked.
AAP-2.P.1: The binary search algorithm starts at the middle of a sorted data set of numbers and eliminates half of the data; this process repeats until the desired value is found or all elements have been eliminated.
AAP-2.P.2: Data must be in sorted order to use the binary search algorithm.
AAP-2.P.3: Binary search is often more efficient than sequential/linear search when applied to sorted data.
AAP-4.A.1: A problem is a general description of a task that can (or cannot) be solved algorithmically. An instance of a problem also includes specific input. For example, sorting is a problem; sorting the list (2,3,1,7) is an instance of the problem.
AAP-4.A.2: A decision problem is a problem with a yes/no answer (e.g., is there a path from A to B?). An optimization problem is a problem with the goal of finding the "best" solution among many (e.g., what is the shortest path from A to B?).
AAP-4.A.3: Efficiency is an estimation of the amount of computational resources used by an algorithm. Efficiency is typically expressed as a function of the size of the input.
AAP-4.A.4: An algorithm's efficiency is determined through formal or mathematical reasoning.
AAP-4.A.5: An algorithm's efficiency can be informally measured by determining the number of times a statement or group of statements executes.
AAP-4.A.6: Different correct algorithms for the same problem can have different efficiencies.
AAP-4.A.7: Algorithms with a polynomial efficiency or slower (constant, linear, square, cube, etc.) are said to run in a reasonable amount of time. Algorithms with exponential or factorial efficiencies are examples of algorithms that run in an unreasonable amount of time.
AAP-4.A.8: Some problems cannot be solved in a reasonable amount of time because there is no efficient algorithm for solving them. In these cases, approximate solutions are sought.
AAP-4.A.9: A heuristic is an approach to a problem that produces a solution that is not guaranteed to be optimal but may be used when techniques that are guaranteed to always find an optimal solution are impractical.
AAP-4.B.1: A decidable problem is a decision problem for which an algorithm can be written to produce a correct output for all inputs (e.g., Is the number even?).
AAP-4.B.2: An undecidable problem is one for which no algorithm can be constructed that is always capable of providing a correct yes-or-no answer.
AAP-4.B.3: An undecidable problem may have some instances that have an algorithmic solution, but there is no algorithmic solution that could solve all instances of the problem.
CSN-2.A.1: Sequential computing is a computational model in which operations are performed in order one at a time.
CSN-2.A.2: Parallel computing is a computational model where the program is broken into multiple smaller sequential computing operations, some of which are performed simultaneously.
CSN-2.A.3: Distributed computing is a computational model in which multiple devices are used to run a program.
CSN-2.A.4: Comparing efficiency of solutions can be done by comparing the time it takes them to perform the same task.
CSN-2.A.5: A sequential solution takes as long as the sum of all of its steps.
CSN-2.A.6: A parallel computing solution takes as long as its sequential tasks plus the longest of its parallel tasks.

	Teaching Guide for Unit 5: Algorithms and Data (edc.org)

	
	

	Jan. 27

	
	20 WEEK MARKING PERIOD CLOSES
	20 WEEK MARKING PERIOD CLOSES
	20 WEEK MARKING PERIOD CLOSES
	20 WEEK MARKING PERIOD CLOSES
	
	

	Jan.- Feb
30 week marking period
	CSP Create Task
 (at least 12 hours)
	AP CSP Create Task (edc.org)
You will work through the following pages twice: once for the practice Create Task (when you can get help from your teacher and classmates) and once for the official Create Task (when you can't get help because it counts toward your AP score).
Using a Development Process to Organize Your Coding
Choosing Your Project
Implementing Your Development Process
Testing Your Project
Communicating About Your Project
Evaluating Your Work

	

ALL PREVIOUS VOCABULARY
	

ALL PREVIOUS STANDARDS
	AP Performance Tasks Teacher Guide (edc.org)

Teachers must provide at least 12 classroom hours to complete the Create Task.
BJC recommends allocating about 6 classroom hours for the Practice Create Task.

	
	

	March
	Lab 1: Computer Abstraction Hierarchy
 (180–360 minutes)

Lab 2: History of Computers
 (35–70 minutes)
	Unit 6: How Computers Work (edc.org)
Lab 1: Computer Abstraction Hierarchy
Abstraction Inside the Computer
The Software Domain: Applications
The Software Domain: Programming Languages
The Software Domain: Libraries
The Software Domain: Operating Systems
The Digital Domain: Architecture
The Digital Domain: Components
The Digital Domain: Integrated Circuits
The Digital Domain: Logic Gates
The Analog Domain: Transistors
Lab 2: History of Computers
A Brief History of Computers
Moore's Law

	

Analog- digital – software library – machine language – architecture – integrated circuit

Moore’s Law -

	
Learning Goals:
Understand that the computer abstraction hierarchy includes three major domains: software, digital, and analog.
Understand that these domains are separated by the abstraction of a program and the abstraction of data being represented digitally, as ones and zeros.
Understand that the software and digital domains each include a sub-hierarchy of abstraction.

Learning Goals:
Understand Moore's Law, that transistor count in ICs has approximately doubled every year or two.
Understand that computer processor speed and memory size have roughly followed the same growth.
Appreciate that Moore's Law isn't a law of nature and has limitations.

	Teaching Guide for Unit 6: How Computers Work (edc.org)

The required content for the AP CS Principles exam is in the first five units. Units 6-8 contain ideas that we consider important, but that are not included in the CS Principles Framework. They are therefore suitable for use in the weeks following the AP exam.
	
	

	March 24th
	
	30 WEEK MARKING PERIOD CLOSES
	30 WEEK MARKING PERIOD CLOSES
	30 WEEK MARKING PERIOD CLOSES
	30 WEEK MARKING PERIOD CLOSES
	
	

	40 weeks
	
	

	
	
	
	
	

	April 1-16
	Spring Break
	
	
	

	April
	(at least 12 hours)
	
AP CSP Create Performance Task
	
ALL PREVIOUS VOCABUALRY
	
ALL PREVIOUS STANDARDS
	AP Performance Tasks Teacher Guide (edc.org)
	
	

	April -May
	(at least 12 hours)
	
Create Task - Written Responses
	
ALL PREVIOUS VOCABUALRY

	
ALL PREVIOUS STANDARDS

	AP Performance Tasks Teacher Guide (edc.org)

	
	

	May 8th 2023
	
	
	AP COMPUTER SCIENCE EXAM
	
	
	
	

	May
	Lab 1: Trees
 (70–140 minutes)

Lab 2: Recursion Projects
 (95–190 minutes) for required pages
	Unit 7: Fractals and Recursion (edc.org)
Lab 1: Trees
Recursive Tree
The Base Case
Self-Check: Tree Inputs
Self-Check: Tree Variations
Vary Your Tree
Lab 2: Recursion Projects
Triangle Fractal
Koch Snowflake
Lévy C-Curve Fractal
Recursive Mondrian

	

Fractal – state transparency – recursion – base case

	

Learning Goal:
Get a collective introduction to recursion through the Vee project, which selects blocks to draw from a list of shape blocks that includes the vee block itself.

Learning Goal:
Practice recursion by developing several fractal-drawing programs.
Apply mathematics (including Pythagorean formula, coordinate positioning, and angles) to computer graphics.

	Teaching Guide for Unit 7: Fractals and Recursion (edc.org)
	
	

	June
	Lab 1: Recursive Reporters
 (80–160 minutes)

Lab 2: Base Conversion
 (45–90 minutes)

Lab 3: Subsets
 (70–140 minutes)

Lab 4: Building Higher Order Functions
 (80–160 minutes)
	Unit 8: Recursive Functions (edc.org)
Lab 1: Recursive Reporters
Counting Trees
Writing Recursive Reporters
Lab 2: Base Conversion
Binary Conversion
Base Conversion
Lab 3: Subsets
Counting Ice Cream Bowls
Listing the Subsets
Lab 4: Building Higher Order Functions
Walking Down a List
Generalizing the Map Pattern
Even Numbers and Keep
	

subset
	Learning Goal:
Understand how recursive reporters differ from recursive commands.
Understand combiners in recursive reporters.
Practice recursive functions.
Learn a more elegant approach to base conversion.
Generalize from binary to base conversion in general.
Explore a problem with a solution of exponentially increasing length.
Explore one of the classic problems in computer science: subsets.
Investigate the code pattern that will be generalized into the map function
Learn how to write the higher-order function map.
Get to know problems for which you can't use map itself but for which you can fall back to the map code pattern.
Build the higher-order functions keep and combine.

	Teaching Guide for Unit 8: Recursive Functions (edc.org)
	
	

	June 16 marking period closes
	
	40 WEEK MARKING PERIOD CLOSES
	40 WEEK MARKING PERIOD CLOSES
	40 WEEK MARKING PERIOD CLOSES
	40 WEEK MARKING PERIOD CLOSES
	
	

